 x8664 Linux
 IA32 Linux
 64bit MacOSX
 32bit Windows
 64bit Windows
Gaussian 16 y GaussView 6
Gaussian 16 es la última versión de esta serie de programas líderes en QUIMICA COMPUTACIONAL.que proporciona enormes capacidades para modelado electrónico de estructuras.Todas las versiones tienen las características científicas y de modelado, y ninguna impone limitaciones artificiales a los cálculos ,aparte de la potencia de la máquina en la que se use
Nuevas características:
Compute the force constants are every nth step of a geometry optimization: see Opt=Recalc.
What’s New in Gaussian 16
.
.
Mejoras desde la versión 09
The following calculation defaults are different in Gaussian 16:
The first two items were changed to ensure accuracy in several new calculation types (e.g., TDDFT frequencies, anharmonic ROA). For these reasons, Integral=(UltraFine,Acc2E=12) was made the default. Using these settings generally improve the reliability of calculations involving numerical integration, e.g., DFT optimizations in solution. There is a modest increase in the CPU requirements for these options compared to the Gaussian 09 defaults of Integral=(FineGrid,Acc2E=10).
The G09Defaults keyword sets all four of these defaults back to the Gaussian 09 values. It is provided for compatibility with previous calculations, but the new defaults are strongly recommended for new studies.
Gaussian 16 defaults memory usage to %Mem=100MW (800MB). Even larger values are appropriate for calculations on larger molecules and when using many processors; refer to the Parallel Jobs tab for details.
TDDFT frequency calculations compute second derivatives analytically by default, since these are much faster than the numerical derivatives (the only choice in Gaussian 09).
Requerimientos Técnicos
http://gaussian.com/g16/g16_plat.pdf
GaussView 6
En este link, encontrara numerosos videos para descubrir las nuevas capacidades:
GaussView 5:Visualización y Química Extendida:
Gaussview es la más avanzada y potente interfaz gráfica para Gaussian.
Con esta herramienta usted podrá importar o construir estructuras moleculares que le interesen,monitorizar los cálculos de Gaussian, y visualizar los resultados,todo esto sin salir de la aplicación.
Además esta versión 5 incluye muchas nuevas capacidades orientadas al trabajo con grandes volumenes de aplicaciones y datos sobre química.
también proporciona soporte para los nuevos métodos de modelado incluidos en Gaussian 09.
Gaussview porporciona soporte para la importación o el trabajo con estructuras en ficheros PDB, con un método sencillo:
seleccionar la estructura deseada del fichero multiestructura
añadir átomos de hidrogeno automaticamente o manualmente de acuerdo a sus preferencias
añadir átomos de hidrogeno los residuos ó a cadenas, hélices óa otras estructuras
seleccionar átomos en los residuos o en estructuras secundarias
determinar el residuo de cualqueir átomo seleccionado con el ratón
Guardar al informaciónd e l residuo dentro de Gaussian 09 y sacar los resultados.
VERSIONES ANTERIORES
Gaussian 03 es la ultima
version de los programas de series de estructuras de Gaussian.
Habitualmente usado por
químicos,ingenieros,bioquimicos,físicos , y otros
investigadores pertenecientes al area química.
Desde lso principios básicos de la
química cuantica,Gaussian predice las energías,estructuras
moleculares, y frecuencias vibracionales de los sistemas
moleculares,así como propiedades moleculares.
Puede ser usado para estudiar las
moléculas y sus reacciones bajo un amplio abanico de simulación
de condiciones, cuya observación seria imposible en vivo, sin un
modelo computacional que proporciona Gaussian.
El método gaussian 03 ONIOM proporciona
la posiblidad de estudiar proteinas enteras y grandes conjuntos
de moléculas,definiendo 2 o 3 layers cuya estructura es tratada
a diferentes niveles
El método Onion proporciona mejoras para
el estudio geométrico usando algoritmos cuadráticos coplejos y
micro iteraciones
Las nuevas características de gaussian
03 repecto al metodo Oniom son:
Personalización de los campos de fuerza
de la mecanica molecular
Cálculos eficientes de la frecuencia
Calculo de las propiedades magnéticas y
electricas.
Gaussian 2003 puede predecir
spinspin
constantes que se añaden al NMR.
Los sistemas periodicos en esta versión
se han ampliado, con la posibilidad de sistemas periodicos como
los polimeros, cristales bajo metodos PBC,que permiten determinar
la estructura y propiedades de estos cristales
Ademas metodos en 2 dimensiones PBC
pueden ser usados para modelar superficies , como reacciones en
superficies y catálisis
Tambien metodos en 3 dimensiones PBC le
permite ver y prever las estructuras en 3D de los cristales.
Tambien incluye un amplio rango de
espectros y propiedades como:
Cited references were chosen to be
representative,
accessible overviews. However, the reference list provided should
not be considered exhaustive. For full citation lists, consult
the printed or online version of the Gaussian 03 User's Reference.
The ONIOM facility in Gaussian 03 has been
significantly enhanced over that offered by Gaussian 98
[12]:
·
The ONIOM facility [42] now supports electronic embedding for
ONIOM(MO:MM) calculations: the electrostatic properties of the MM
region can be taken into account during computations on the QM region.
o
A quadratic coupled algorithm takes into account the coupling
between atoms using internal coordinates (typically, those in the
model system) and those in Cartesian coordinates (typically, the
atoms only in the MM layer), resulting in more accurate steps.
o
MO/MM optimizations perform
microiterations for the atoms only
in the MM layer between traditional optimization steps on the
real system, resulting in faster and more reliable optimizations.
Electronic embedding can be combined with microiterations.
·
Analytic frequencies are available for
ONIOM(MO:MM) calculations,
and frequencies for ONIOM(MO:MO) calculations are significantly faster.
·
Gaussian 03 provides support for general molecular mechanics (MM)
force fields, including readin and modified parameters. A
standalone MM optimization program is also included.
·
Support for an external program for any ONIOM model
(e.g., an
external MM program may be used).
The Polarizable Continuum Model
(PCM) solvation method has
been improved and extended [38]:
·
The IEFPCM model [3,9] is now the
default, and analytic
frequencies are now available for this SCRF method. Additional
performance improvements include a new cavity generation
technique [10].
·
Many additional properties can be modeled in solution
(discussed
later in this brochure).
·
Gaussian 03 can also produce input for Klamt's
COSMORS
program [11], which computes solvation energies, partition coefficients, vapor pressure and other bulk properties via
statistical mechanics techniques.
Gaussian 03 offers PBC calculations for studying
periodic systems: e.g., polymers, surfaces and crystals [1215].
PBC calculations solve the Schrödinger equation subject to the
boundary condition that the molecule and the wavefunction repeat
indefinitely in one, two or three directions. HartreeFock and
DFT energies and gradients are available for periodic systems.
Dynamics calculations can provide qualitative understanding of
reaction mechanisms and quantitative details about the reaction
such as product distributions. There are two main approaches to
performing these calculations:
·
In BornOppenheimer Molecular Dynamics
(BOMD), classical
trajectories are calculated on a local quadratic approximation to
the potential energy surface (for a review, see [16]). Our
implementation [17] uses a Hessianbased algorithm for the
predictor and corrector steps, an approach which results in a
factor of 10 or more improvement in the step size over previous implementations. While it can make use of analytic second
derivatives, BOMD is available for all theoretical methods having
analytic gradients.
·
Gaussian 03 also offers
AtomCentered Density Matrix
Propagation (ADMP) method [1820] molecular dynamics (available
for HartreeFock and DFT). Drawing on the work of Car and
Parrinello [21], ADMP propagates the electronic degrees of
freedom rather than solving the SCF equations at each nuclear geometry. Unlike
CP, ADMP propagates the density matrix rather
than the MOs. This is much more efficient if an atomcentered
basis set is being used. This approach overcomes some limitations
inherent in the CP implementation: e.g., there is no need to
substitute D for H in order to maintain energy conservation, and
both pure and hybrid DFT functionals can be used. ADMP
calculations can also be performed in the presence of a solvent
[22], and ADMP can be used in ONIOM(MO:MM) calculations.
There are additions and several enhancements to excited states
methods:
·
CASSCF calculations are now more efficient due to a new algorithm
for evaluating the CIvector in the full configuration
interaction calculation [23]. Practical active spaces increase to
about 14 orbitals for energies and gradients (they remain at
about 8 orbitals for frequencies).
·
The Restricted Active Space (RAS) SCF method [24] is also
available[25]. RASSCF calculations partition the molecular
orbitals into five sections: the lowest lying occupieds (considered inactive in the
calculation), the RAS1 space of
doubly occupied MOs, the RAS2 space containing the most important
orbitals for the problem, the RAS3 space of weakly occupied MOs
and the remaining unoccupied orbitals (also treated as frozen by
the calculation). Thus, the active space in CASSCF calculations
is divided into three parts in a RAS calculations, and allowed
configurations are defined by specifying the minimum number of
electrons that must be present in the RAS1 space and the maximum
number that must be in the RAS3 space, in addition to the total
number of electrons in the three RAS spaces.
·
NBO orbitals for may be used for defining CAS and RAS active
spaces. These provide good initial guesses for the required
antibonding orbitals which correlate with the bonds/lone pairs of interest.
·
The Symmetry Adapted
Cluster/Configuration Interaction (SACCI)
method of Nakatsuji and coworkers is now included in Gaussian.
This method has many uses: predicting very accurate excited
states of organic systems, studying twotomany electron
excitation processes such as the shakeup in the ionization spectrum, and other problem
types. For an overview of the SACCI method, see [2627].
·
Solvent Effects: Excited states can be modeled in the presence of
a solvent [2829] using the CISingles and Time Dependent HartreeFock and DFT
methods.
Gaussian 03 provides many new molecular
properties:
·
Spinspin coupling constants [3134], which can aid in
distinguishing conformations in magnetic spectra.
·
g tensors and other hyperfine spectra tensors [4952]. Gaussian
03 can produce nuclear electric quadrupole constants,
rotational constants, the quartic centrifugal distortion terms,
the electronic spin rotation terms, the nuclear spin rotation terms, the dipolar hyperfine terms and Fermi contact
terms. All
tensors can be exported to Pickett's fitting and spectral
analysis program [53].
·
Harmonic
vibrationrotation coupling [4344]: A spectroscopic
property dependent on the coupling between molecules' vibrational
and rotational modes. It is used to analyze detailed rotational spectra.
·
Anharmonic vibration and
vibrationrotation coupling [4448]:
Using perturbation theory, these higher order terms are
incorporated into frequency calculations in order to produce more
accurate results.
·
Preresonance Raman spectra which yield information about ground
state structures, connectivity, and vibrational states.
·
Optical
Rotations/Optical Rotary Dispersion: Used to distinguish
enantiomers of chiral systems [3941] (this property is computed
via GIAOs).
·
Electronic Circular Dichroism
(ECD): This property is the
differential absorption in the visible and ultraviolet regions
for optically active molecules, and is used to assign absolute
configurations [3536]. Predicted spectra can also be useful in
interpreting existing ECD data and peak assignments.
·
Frequencydependent polarizabilities and
hyperpolarizabilities,
which can be used to study how the molecular properties of
materials vary with wavelength of the incident light [3738].
·
Magnetic susceptibilities computed with
GaugeIndependent Atomic
Orbitals (GIAOs) [30]. This property is the magnetic analogue to
the electric polarizability, and it provides insight into the
diamagnetic vs. paramagnetic character of molecules.
·
Solvent Effects: Electric and magnetic properties and the various
spectra can be predicted for systems in solution as well as ones
in the gas phase [5456].
·
Properties with
ONIOM: The ONIOM method may be used with these
electric and magnetic properties.
·
Much Better Initial
Guesses: Gaussian 03 uses the Harris
functional for generating initial guesses. This functional [59]
is a noniterative approximation to DFT, and it produces initial
guesses which are better than those produced by Gaussian 98: for example, there are modest improvements for organic systems but
very substantial improvements for compounds containing metals.
·
New SCF Convergence
Algorithm: The default SCF algorithm now uses
a combination of two Direct Inversion in the Iterative Subspace (DIIS) extrapolation methods EDIIS and
CDIIS. EDIIS [58] uses
energies for extrapolation, and it dominates the early iterations
of the SCF convergence process. CDIIS, which performs
extrapolation based on the commutators of the Fock and density
matrices, handles the latter phases of SCF convergence. This new
algorithm is very reliable, and previously troublesome SCF
convergence cases now almost always converge with the default algorithm. For the few remaining pathological convergence cases, Gaussian
03 offers Fermi broadening and damping in combination with CDIIS (including automatic level
shifting).
·
Density Fitting for Pure DFT
Calculations: Gaussian 03
provides the density fitting approximation [60,61] for pure DFT calculations. This approach expands the density in a set of
atomcentered functions when computing the Coulomb interaction
instead of computing all of the twoelectron integrals. It
provides significant performance gains for pure DFT calculations
on medium sized systems too small to take advantage of the linear
scaling algorithms without a significant degradation in accuracy.
Gaussian 03 can generate an appropriate fitting basis
automatically from the AO basis, or you may select one of the builtin fitting
sets.
·
Faster and Automated
FMM: The fast multipole method (FMM) in Gaussian
98 allowed the computational cost for large DFT calculations
to scale linearly with system size. In Gaussian 03,
improvements to these algorithms [57] means that their
performance gains can be realized for systems of more modest size
as well (~100 atoms for pure DFT calculations and ~150 atoms with
hybrid functionals). In addition, this feature is now fully automated: the program invokes FMM automatically when
appropriate.
·
Coulomb Engine: Gaussian 03 incorporates a faster
algorithm for the Coulomb operator for pure DFT calculations. The
Coulomb engine produces the exact Coulomb matrix without
explicitly forming four center two electron integrals. This
substantially reduces the CPU time for the Coulomb problem in
pure DFT calculations.
·
O(N) Exact
Exchange: A new algorithm for HartreeFock and
DFT calculations using hybrid functionals implements screening of
the exact exchange contribution via the density matrix to
eliminate the many zero value terms [62]. This technique results
in a linear computational cost for these methods without accuracy loss.
o
B1 [72] and
variations, B98 [75, 83], B971 [76], B972 [77], and
PBE1PBE [71] hybrid functionals.
o
The W1 method of Jan Martin [8081], modified slightly to use the
UCCSD method rather than ROCCSD for open shell systems (this
method is denoted W1U). Gaussian 03 also includes the
related W1BD method, which substitutes the BD method for coupled
cluster [84]. This method is both more expensive and more
accurate than CBSQB3 and G3.
·
DouglasKrollHess scalar relativistic
Hamiltonian: This feature
allows all electron calculations for heavier atoms (first and
second transition rows) when ECPs are not accurate enough
[6366]. For an overview, see [6768]
1 
T. Vreven, K. Morokuma, Ö. Farkas, H. B. Schlegel, and M.
J. Frisch, J. Comp. Chem. in press (2003). 
2 
T. Vreven, I. Komáromi, S. Dapprich, K. S. Byun, J. A.
Montgomery Jr., K. Morokuma, and M. J. Frisch, in prep.
(2003). 
3 
B. Mennucci, E. Cancès, and J. Tomasi, J. Phys. Chem. B
101, 10506 (1997). 
4 
B.
Mennucci and J. Tomasi, J. Chem. Phys. 106, 5151 (1997). 
5 
M. Cossi, N. Rega, G. Scalmani and V. Barone, J. Chem. Phys.
114, 5691 (2001). 
6 
M. Cossi, G. Scalmani, N. Rega, and V. Barone, J. Chem Phys.
117, 43 (2002). 
7 
M.
Cossi, N. Rega, G. Scalmani, V. Barone, J. Comp. Chem. in
press (2003). 
8 
G. Scalmani, V. Barone, K. N. Kudin, C. S. Pomelli, G. E. Scuseria, and M. J.
Frisch, Theo. Chem. Acc., submitted
(2003). 
9 
E.
Cancès and B. Mennucci, J. Chem. Phys. 114, 4744 (2001). 
10 
G. Scalmani, N. Rega, M. Cossi and V. Barone, in prep.
(2003). 
11 
F.
Eckert and A. Klamt, AIChE Journal 48, 369 (2002). 
12 
K.
N. Kudin and G. E. Scuseria, Chem. Phys. Lett. 289, 611
(1998). 
13 
K.
N. Kudin and G. E. Scuseria, Chem. Phys. Lett. 283, 61
(1998). 
14 
K.
N. Kudin and G. E. Scuseria, Phys. Rev. B 61, 16440
(2000). 
15 
O.
V. Yazyev, K. N. Kudin, and G. E. Scuseria, Phys. Rev. B
65, art. no. 205117 (2002). 
16 
K. Bolton, W. L. Hase, and G. H. Peshlherbe, in Modern
Methods for Multidimensional Dynamics Computation in Chemistry, Ed. D. L. Thompson (World
Scientific, Singapore, 1998) 143. 
17 
J.
M. Millam, V. Bakken, W. Chen, W. L. Hase, and B. H. Schlegel, J. Chem.
Phys. 111, 3800 (1999). 
18 
H.
B. Schlegel, J. M. Millam, S. S. Iyengar, G. A. Voth, A.
D. Daniels, G. E. Scuseria, and M. J. Frisch, J. Chem. Phys. 114, 9758 (2001). 
19 
S.
S. Iyengar, H. B. Schlegel, J. M. Millam, G. A. Voth, G.
E. Scuseria, and M. J. Frisch, J. Chem. Phys. 115, 10291
(2001). 
20 
H.
B. Schlegel, S. S. Iyengar, X. Li, J. M. Millam, G. A. Voth, G. E.
Scuseria, and M. J. Frisch, J. Chem. Phys.
117, 8694 (2002). 
21 
R.
Car and M. Parrinello, Phys. Rev. Lett. 55, 2471 (1985). 
22 
N. Rega, S. S. Iyengar, G. A. Voth, H. B. Schlegel, G. E. Scuseria, and M. J.
Frisch, in prep. (2003). 
23 
M. Klene, M. A. Robb, M. J. Frisch, and P. Celani, J. Chem. Phys. 113, 5653 (2000). 
24 
J. Olsen, B. O. Roos, P. Jorgensen, and H. J. A. Jensen, J. Chem. Phys. 89, 2185 (1988). 
25 
M. Klene, M. A. Robb, L. Blancafort, and M. J. Frisch, in
prep (2003). 
26 
H. Nakatsuji, in Computational ChemistryReviews of Current Trends, Ed. J.
Leszcynski, Vol. 2 (World Scientific, Singapore, 1997) 62124. 
27 
M. Ehara, M. Ishida, K. Toyota, and H. Nakatsuji, in Reviews
in Modern Quantum Chemistry, Ed. K. D. Sen (World Scientific, Singapore, 2002) 293. 
28 
B. Mennucci, R. Cammi, and J. Tomasi, J. Chem. Phys. 109,
2798 (1998). 
29 
M.
Cossi and V. Barone, J. Chem. Phys. 115, 4708 (2001). 
30 
K. Ruud, T. Helgaker, K. L. Bak, P. Jorgensen, and H. J. A. Jensen, J.
Chem. Phys. 99, 3847 (1993). 
31 
V. Sychrovsky, J. Grafenstein, and D. Cremer, J. Chem. Phys.
113, 3530 (2000). 
32 
T. Helgaker, M. Watson, and N. C. Handy, J. Chem. Phys. 113,
9402 (2000). 
33 
V. Barone, J. E. Peralta, R. H. Contreras, and J. P. Snyder,
J. Phys. Chem. A 106, 5607 (2002). 
34 
J.
E. Peralta, R. H. Contreras, J. R. Cheeseman, M. J. Frisch, and G. E.
Scuseria, in prep. (2003). 
35 
K.
L. Bak, P. Jorgensen, T. Helgaker, K. Ruud, and H. J. A. Jensen, J. Chem.
Phys. 98, 8873 (1993). 
36 
J. Autschbach, T. Ziegler, S. J. A. van Gisbergen, and E. J. Baerends, J.
Chem. Phys. 116, 6930 (2002). 
37 
J.
E. Rice and N. C. Handy, J. Chem. Phys. 94, 4959 (1991). 
38 
J.
E. Rice and N. C. Handy, Int. J. Quant. Chem. 43, 91
(1992). 
39 
T. Helgaker, K. Ruud, K. L. Bak, P. Jorgensen, and J. Olsen,
Faraday Discuss. 99, 165 (1994). 
40 
P.
J. Stephens, F. J. Devlin, J. R. Cheeseman, M. J. Frisch,
and C. Rosini, Organic Letters 4, 4595 (2002). 
41 
P.
J. Stephens, F. J. Devlin, J. R. Cheeseman, M. J. Frisch,
O. Bortolini, and P. Besse, Chirality 14, (2002). 
42 
S. Dapprich, I. Komáromi, K. S. Byun, K. Morokuma, and M.
J. Frisch, J. Mol. Struct. (Theochem) 462, 1 (1999). 
43 
W.
H. Miller, in Potential Energy Surfaces and Dynamical Calculations, Ed. D. G. Truhlar
(Plenum, New York, 1981)
265. 
44 
V. Barone, J. Comp. Chem. in prep. (2003). 
45 
W.
H. Miller, N. C. Handy, and J. E. Adams, J. Chem. Phys.
72, 99 (1980). 
46 
D.
A. Clabo, W. D. Allen, R. B. Remington, Y. Yamaguchi, and
H. F. Schaefer III, Chemical Physics 123, 187 (1988). 
47 
C.
Minichino and V. Barone, J. Chem. Phys. 100, 3717 (1994). 
48 
V.
Barone and C. Minichino, Theochem 330, 365 (1995). 
49 
R.
F. Curl Jr., Mol. Phys. 9, 585 (1965). 
50 
J.
Gauss, K. Ruud, and T. Helgaker, J. Chem. Phys. 105, 2804
(1996). 
51 
V. Barone, Chem. Phys. Lett. 262, 201 (1996). 
52 
F. Neese, J. Chem. Phys. 115, 11080 (2001). 
53 
H.
M. Pickett, J. Mol. Spec. 148, 317 (1991). 
54 
J. Tomasi, R. Cammi, B. Mennucci, C. Cappelli, and S. Corni, Phys. Chem.
Chem. Phys. 4, 5697 (2002). 
55 
B. Mennucci, J. Tomasi, R. Cammi, J. R. Cheeseman, M. J. Frisch, F. J.
Devlin, S. Gabriel, and P. J. Stephens, J. Phys. Chem. A 106, 6102 (2002). 
56 
C. Cappelli, S. Corni, B. Mennucci, R. Cammi, and J. Tomasi,
J. Phys. Chem. A 106, 12331 (2002). 
57 
K.
N. Kudin and G. E. Scuseria, J. Chem. Phys. 111, 2351
(1999). 
58 
K.
N. Kudin, G. E. Scuseria, and E. Cancès, J. Chem. Phys.
116, 8255 (2002). 
59 
J. Harris, Phys. Rev. B. 31, 1770 (1985). 
60 
B. I. Dunlap, J. Chem. Phys. 78, 3140 (1983). 
61 
B. I. Dunlap, J. Mol. Struct. (Theochem) 529, 37 (2000). 
62 
J.
C. Burant, K. Kudin, G. E. Scuseria, G. W. Trucks, and M.
J. Frisch, in prep. (2003). 
63 
M.
Douglas and N. M. Kroll, Ann. Phys. (NY) 82, 89 (1974). 
64 
B.
A. Hess, Phys. Rev. A 32, 756 (1985). 
65 
B.
A. Hess, Phys. Rev. A 33, 3742 (1986). 
66 
G.
Jansen and B. A. Hess, Phys. Rev. A 39, 6016 (1989). 
67 
M.
Barysz and A. J. Sadlej, Theochem 573, 181 (2001). 
68 
W.
A. deJong, R. J. Harrison, and D. A. Dixon, J. Chem. Phys. 114, 48 (2001). 
69 
N.
C. Handy and A. J. Cohen, Mol. Phys. 99, 403 (2001). 
70 
J.
P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett.
77, 3865 (1996). 
71 
J.
P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev.
Lett.
78, 1396 (1997). 
72 
A.
D. Becke, J. Chem. Phys. 104, 1040 (1996). 
73 
T.
Van Voorhis and G. E. Scuseria, J. Chem. Phys. 109, 400
(1998). 
74 
A.
D. Boese and N. C. Handy, J. Chem. Phys. 114, 5497
(2001). 
75 
H.
L. Schmider and A. D. Becke, J. Chem. Phys. 108, 9624
(1998). 
76 
F.
A. Hamprecht, A. J. Cohen, D. J. Tozer, and N. C. Handy,
J. Chem. Phys. 109, 6264 (1998). 
77 
P.
J. Wilson, T. J. Bradley, and D. J. Tozer, J. Chem. Phys.
115, 9233 (2001). 
78 
L.
A. Curtiss, K. Raghavachari, P. C. Redfern, V. Rassolov,
and J. A. Pople, J. Chem Phys. 109, 7764 (1998). 
79 
L.
A. Curtiss, P. C. Redfern, K. Raghavachari, V. Rassolov,
and J. A. Pople, J. Chem. Phys. 110, 4703 (1999). 
80 
S.
Parthiban and J. M. L. Martin, J. Chem. Phys. 114, 6014
(2001). 
81 
J.
M. L. Martin and G. de Oliveira, J. Chem. Phys. 111, 1843
(1999). 
82 
E.
V. R. de Castro and F. E. Jorge, J. Chem. Phys. 108, 5225
(1998). 
83 
A.
D. Becke, J. Chem. Phys. 107, 8554 (1997). 
84 
J.
A. Montgomery Jr., M. J. Frisch, and J. M. L. Martin, in
prep (2003) 


New features are indicated in deep
indigo.
Customize many aspects of GaussView functionality: